
n ! 
vich number; E----OchE[Tho+- 7 (Th~_,+ThO]At~ , stored energy; s 

total amount of energy; ~c*=N~Tho--To)=l~{i• ~/s dimensionless time. Subscripts: O, initial 
state; m, melting; L, liquid phase; S, solid phase; h, heat carrier; w, wall; s, structure. 
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ACCURATE SOLUTIONS OF BOUNDARY-LAYER 

EQUATIONS FOR MOVING PERMEABLE SURFACES 

G. I. Burde UDC 532.526 

New accurate solutions of the equations of a laminar boundary layer are obtained 
for steady flow induced by the motion of a continuous solid surface at constant 
velocity. 

The flow arising in the motion of a solid surface in a quiescent liquid is of interest 
in connection with film and fiber production in the glass and polymer industries. The bound- 
ary layers at continuous surfaces moving at constant velocity in a viscous incompressible 
liquid were considered in [1-5]. In [1-4], the flow close to impermeable plane and cylindri- 
cal surfaces was studied. In the case of a plane surface, when there is a self-similar solu- 
tion, the problem reduces to numerical integration of an ordinary differential equation [i, 
2]. In the case of a cylindrical surface, the solution is obtained by the integral method 
[i, 3] and the method of expansion in power series with respect to the radial coordinate [4]. 
In [5], the self-similar solution was investigated numerically for a boundary layer at a 
permeable plane surface, through which there is suction or injection of the same liquid at 
a velocity decreasing in the direction of motion of the plane according to the law v0 = 
q/r 

The present work gives some accurate solutions of the equations of a laminar boundary 
layer of incompressible liquid, describing the flow close to permeable surfaces moving at 
constant velocity; these solutions exist in the presence of a definite relation between the 
liquid suction rate and the other parameters of the problem. The solution for the case of a 
cylindrical surface gives a sufficiently rare example of an accurate non-self-similar solu- 
tion. 

The boundary-layer equations for a flow induced by the motion of a plane surface in 
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Fig. i. Boundary layer at a moving plane surface with suc- 
tion. 

quiescent liquid take the form 

Ou Ou O~u Ou Ov 
u - - - + v - -  = ~ - - ,  

Ox ay Og ~ Ox @ 

These equations assume the solution 

6u 0 

(q + 1 / @  ' 

~ Uo V /  3~uo 
n =  ---47 y' q= 2 ' 

which corresponds to a plate moving at velocity [u0[ 

= 0 .  

q -[/6(21] -~ -V6) 

Vx (n + Vg) ~ 
(i) 

in the direction opposite to the x axis, 
in the presence of suction with an intensity distributed according to the law v 0 = -q/r 
This situation, shown schematically in Fig. I, differs from that considered in [i, 2, 5] in 
the direction of motion of the plate: the plate is moving into, rather than out of, the slit. 

In Fig. 2, the dependence of ~ = u/u0 and ~ = -v/~/q on the self-similar variable q is 
compared with the analogous dependence corresponding to the formulation of the problem in [5] 
with the same suction intensity q. 

For axisymmetric flow induced by the motion of a cylinder in the axial direction, the 
boundary-layer equations in the cylindrical coordinates r, z (the z axis coincides wita the 
cylinder axis) are written in the form 

au 0 (r 0. 1 0(ru) 01m Ou +o . . . .  , - -  =0. 

OZ dr r dr \ dr j Oz ~ dr 

The non-self-similar accurate solution of these equations describing the flow close to a 
permeable cylinder of radius r 0 is written in parametric form 

i 2 r 
u = u o - ~ - ,  a = ~ - S t - - 1 ,  ~ = - - ,  

r0 

v = q 2 n t- 6 (t - -  1) 3t ( t - -  1) 2v 

~0r~ 
z = z , ( t + l n l t - - 1 1 + A ) ,  z , - -  12v 

Here  A i s  an a r b i t r a r y  c o n s t a n t .  

The d i s t r i b u t i o n  o f  t h e  s u c t i o n  r a t e  ove r  t h e  c y l i n d e r  s u r f a c e  i s  o b t a i n e d  f rom Eq. (2)  
in  t h e  f o l l o w i n g  p a r a m e t r i c  form 

v ~  1 - 3 I t  ) '  z = z * ( t + l n [ t - - l l + A ) "  (3)  

Considering different regions of variation in t in Eq. (2) and different values of the 
constant A, different types of solutions may be obtained. 

For t varying from 0 to 1 when u 0 < 0 and A = 0 (z~. < 0, so that z varies from 0 to ~), 
a solution corresponding to motion of a cylinder at velocity lu01 in the direction opposite 
to the z axis is obtained. The distribution of the suction rate v0(z) calculated from Eq. 
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Fig. 2. Comparison of the dependence of the dimensionless 
velocity components ~ = u/u 0 and ~ = v/v 0 on the self-similar 
variable q for the case of a plane surface with the analogous 
dependence from [5]: continuous curves) Eq. (1); dashed 
curves) [5]. 

Fig. 3. Dependence of the suction rate v 0 and the condi- 
tional boundary-layer thickness t on the dimensionless longi- 
tudinal coordinate~= z/Iz, I at a cylindrical surface for 
two types of solutions: continuous curves) Eqs. (2) and (3) 
with 0 5 t 5 i, A = 0; dashed curves) Eqs. (2) and (3) with 
1 ! t E 3, A = -3 - In 2. 

\ 
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Fig. 4. Radial distribution ($ = r/r 0) of dimension- 
less velocity components in the case of a cylindrical 
surface with z/lz, l = 0.2. For two types of solu- 
tion: continuous curves) Eq. (2) when 0 <_ t <- i, A 
= 0; dashed curves) Eqs. (2) with I <- t <- 3, A=-3- 
In 2; 

(3) with A = 0 is shown in Fig. 3. The variation in boundary-layer thickness along the 
cylinder is shown by the curve of t(z) in Fig. 3; the boundary-layer thickness 6 is deter- 
mined from the condition u = ku0; hence, using Eq. (2), it follows that ~ is proportional 
to t. 

A solution of a different type is obtained from Eq. (2) with variation in t from 3 to 
i (u0 < 0; A = -3 - In 2; 0 ~ z ~ ~), as shown by the dashed curves in Fig. 3. In contrast 
to the preceding solution, the suction rate falls here in the direction of cylinder motion, 
which leads to increase in boundary-layer thickness in this direction. 

The radial distributions of the longitudinaland transverse velocity components corre- 
sponding to these two types of solution for the same value of the longitudinal coordinate 
z/Iz, I = 0.2 are shown in Fig. 4. 
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Parameter values t ~ 3 (u 0 > 0, A = -3 - in 2) may also be considered, corresponding to 
motion of the cylinder in the direction of the z axis in the presence of liquid injection 
through the surface. 

NOTATION 

x, y, Cartesian coordinates; r, z, cylindrical coordinates; r0, cylinder radius; u, v, 
longitudinal and transverse (to the direction of surface motion) velocity components; u0, 
velocity of surface motion; v0, suction or injection rate through surface; q, parameter de- 
termining the suction or injection intensity; ~, kinematic viscosity; N, self-similar vari- 
able in Eq. (I); $ = r/r0, dimensionless radial coordinate; t, parameter in Eqs. (2) and (3) 
proportional to the boundary-layer thickness; 6, boundary-layer thickness; k, constant con- 
ditionally determining the boundary-layer thickness with respect to the degree of velocity 
drop at its boundary, u = ku 0 when r = r 0 + 6; A, constant in Eqs. (2) and (3); z,, conbina- 
tion of parameters with the dimensions of length, as defined in Eq. (2); e, auxiliary parame- 
ter defined in Eq. (2); ~ = u/u 0, "~= v/v0, z = z/Iz, I , auxiliary parameters used in Figs. 
2 and 3. 

i, 

2. 
3. 
4. 
5. 
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TURBULENT FLOW OF A FIBROUS SUSPENSION IN A PIPE 

A. R. Kuznetsov, A. Ya. Ageev, 
and S. A. Kuznetsova 

UDC 532.542.4 

The Henky-llyushin equations are used to describe the steady turbulent flow of 
an incompressible viscoplastic fluid in a pipe. A fibrous suspension is examined 
as the fluid. 

The class of viscoplastic fluids contains a large number of systems such as cement mor- 
tars, oil-sand mixtures, oils, coal suspensions, etc. [I]. Fibrous suspensions of cellulose 
and asbestos in turbulent flow regimes can also be regarded as viscoplastic fluids. 

~ 

A large number of investigations have been made of the laminar flow viscoplastic fluids, 
while the turbulent flow of these fluids has received little attention. Thus, the authors 
of the monograph [i] examined different problems connected mainly with the laminar motion of 
viscoplastic media. Several studies [2-4] have examined the laws governing the motion 3f 
fibrous suspensions. Here, researchers have obtained an extensive amount of experiment~l 
data and have developed an empirical approach to the study of the turbulent flow of fibcous 
suspensions. The authors of [5, 6] examined the turbulent flow of sand suspensions with the 
use of equations for each phase and with allowance for interaction of the phases. This ap- 
proach leads to very complicated relations which include several unknowns and require time- 
consuming numerical study. In connection with this, it is interesting to examine the suudy 
[7]. Here, continuum conservation equations for the phases of the suspension were obtained 
using Feynman integrals over trajectories. 

The motion of viscoplastic media is described by the Henky-ll'yushin differential equa- 
tions. These equations appear as follows in vectorial form for an incompressible fluid [i]: 
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